If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2+1100x-9810=0
a = 121; b = 1100; c = -9810;
Δ = b2-4ac
Δ = 11002-4·121·(-9810)
Δ = 5958040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5958040}=\sqrt{484*12310}=\sqrt{484}*\sqrt{12310}=22\sqrt{12310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1100)-22\sqrt{12310}}{2*121}=\frac{-1100-22\sqrt{12310}}{242} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1100)+22\sqrt{12310}}{2*121}=\frac{-1100+22\sqrt{12310}}{242} $
| 6n-9=29 | | 9x-48x=x | | 525b-42=3780 | | 3x+5-10+4x=180 | | 64+12m=172 | | 1+3n+3=-2 | | 21n-8=160 | | 2x-36K=14 | | -2(x-3)=2+2x-8 | | 3.25+0.50x=÷0.75x | | 75+2x-10=180 | | x+60/2+56=360 | | -9(v+4)=-7v-44 | | 1/4x=118 | | .5n-10=40 | | 180x=2(30÷3)+17-511+2÷1 | | 12n+7n=38 | | X+22a=0 | | (x-1)(x+10)=24 | | -4.9x^2+20x+50=0 | | -5*0+3*y-9=0 | | 1/4x-15=3 | | 18+0.50x=12+0.75 | | 3x+50=110 | | 111-v=160 | | 3x=2.5x-2.5 | | x+82=130 | | 8x-4(4x+8)=-16 | | 112+17m=316 | | 4k+80=30k+110 | | −16t2+46t+6=0 | | t=t/3+10 |